Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells

authored by
Felix Haase, Christina Hollemann, Sören Schäfer, Agnes Merkle, Michael Rienäcker, Jan Krügener, Rolf Brendel, Robby Peibst
Abstract

We demonstrate damage-free laser contact openings in silicon oxide layers on polycrystalline silicon on oxide (POLO) passivating contacts. A pulsed UV-laser evaporates the upper part of the polycrystalline silicon layer, lifting off the silicon oxide layer on top. On n-type POLO (and p-type POLO, respectively) samples a saturation current density of 2 fA cm−2 (6 fA cm−2) and an implied open-circuit voltage of 733 mV (727 mV) are achieved with a laser contact opening area fraction of 12.3% (8.7%). The application of this ablation process in an interdigitated back contact solar cell leads to an independently confirmed power conversion efficiency of 26.1%. The excellent contact quality of the laser contact openings is proven by the low series resistance of 0.1 Ω cm2 on the solar cell with a contact area of only 3%.

Organisation(s)
Institute of Electronic Materials and Devices
Laboratory of Nano and Quantum Engineering
Institute of Solid State Physics
External Organisation(s)
Institute for Solar Energy Research (ISFH)
Type
Article
Journal
Solar Energy Materials and Solar Cells
Volume
186
Pages
184-193
No. of pages
10
ISSN
0927-0248
Publication date
11.2018
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Renewable Energy, Sustainability and the Environment, Surfaces, Coatings and Films
Sustainable Development Goals
SDG 7 - Affordable and Clean Energy
Electronic version(s)
https://doi.org/10.1016/j.solmat.2018.06.020 (Access: Closed)