Validation of Automatically Generated Forging Sequences by Using FE Simulations

authored by
Yorck Hedicke-Claus, Mareile Kriwall, Jan Langner, Malte Stonis, Bernd Arno Behrens
Abstract

To increase the economic efficiency in the production of geometrically complicated forgings, material efficiency is a determining factor. In this study, a method is being validated to automatically design a multi-staged forging sequence initially based on the CAD file of the forging. The method is intended to generate material-efficient forging sequences and reduce development time and dependence on reference processes in the design of forging sequences. Artificial neural networks are used to analyze the geometry of the forging and classify it into a shape class. Result of the analysis is information on component characteristics, such as bending and holes. From this, special operations such as a bending process in the forging sequence can be derived. A slicer algorithm is used to divide the CAD file of the forging into cutting planes and calculate the mass distribution around the center of gravity line of the forging. An algorithm approaches the mass distribution and cross-sectional contour step by step from the forging to the semi-finished product. Each intermediate form is exported as a CAD file. The algorithm takes less than 10 min to design a four-stage forging sequence. The designed forging sequences are checked by FE simulations. Quality criteria that are evaluated and investigated are form filling and folds. First FE simulations show that the automatically generated forging sequences allow the production of different forgings. In an iterative adaptation process, the results of the FE simulations are used to adjust the method to ensure material-efficient and process-reliable forging sequences.

External Organisation(s)
Institut für integrierte Produktion Hannover (IPH)
Type
Conference contribution
Pages
2867-2881
No. of pages
15
Publication date
2021
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Electronic, Optical and Magnetic Materials, Energy Engineering and Power Technology, Mechanics of Materials, Metals and Alloys, Materials Chemistry
Sustainable Development Goals
SDG 8 - Decent Work and Economic Growth, SDG 12 - Responsible Consumption and Production
Electronic version(s)
https://doi.org/10.1007/978-3-030-75381-8_238 (Access: Closed)