Mechanisms of nitrogen isotope fractionation at an ancient black smoker in the 2.7 Ga Abitibi greenstone belt, Canada

authored by
A. N. Martin, E. E. Stüeken, J. A.S. Michaud, C. Münker, S. Weyer, E. H.P. van Hees, M. M. Gehringer
Abstract

The biological nitrogen (N) cycle on early Earth is enigmatic because of limited data from Archean (meta-)sediments and the potential alteration of primary biotic signatures. Here we further investigate unusual 15N enrichments reported in 2.7 Ga meta-sediments from the Abitibi greenstone belt, Canada, purportedly related to a 15N-enriched Archean atmosphere. Given that sediments from this region are contemporaneous with large-scale volcanogenic massive sulfide deposits, we utilize Cu and Zn contents to trace the effects of hydrothermal circulation on N isotope fractionation. We show that high δ15Nbulk values as high as +23%o are associated with Cu-Zn mineralization, whereas unmineralized organic-rich shales exhibit much lower δ15Nbulk and δ15Nkerogen values. Moreover, we find a large offset between δ15Nbulk and δ15Nkerogen of as much as 17%o and relate this to the addition of organic-bound N during the late-stage emplacement of organic-rich veins. We conclude that the previously reported high δ15N values are most parsimoniously explained by biotic and abiotic mechanisms rather than a 15N-enriched atmosphere. Crucially, both mechanisms require the presence of NH4+ in hydrothermal fluids, supporting the hypothesis that hydrothermal discharge was an important nutrient source for Neoarchean marine life.

Organisation(s)
Institute of Mineralogy
Geochemistry
External Organisation(s)
University of St. Andrews
University of Cologne
Oakland University
University of Kaiserslautern
Type
Article
Journal
GEOLOGY
Volume
52
Pages
181-186
No. of pages
6
ISSN
0091-7613
Publication date
01.03.2024
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Geology
Sustainable Development Goals
SDG 14 - Life Below Water
Electronic version(s)
https://doi.org/10.1130/G51689.1 (Access: Open)