Ultra-Low Content Triethylammonium Chloride Facilitates Localized High-Concentration Electrolytes and Formation of Inorganic Solid Electrolyte Interface
- verfasst von
- Zhihua Lin, Frederik Bettels, Taoran Li, Sreeja K. Satheesh, Haiwei Wu, Fei Ding, Chaofeng Zhang, Yuping Liu, Hui Ying Yang, Lin Zhang
- Abstract
Localized high-concentration electrolytes offer a potential solution for achieving uniform lithium deposition and a stable solid-electrolyte interface in Lithium metal batteries. However, the use of highly concentrated salts or structure-loaded diluents can result in significantly higher production costs and increased environmental burdens. Herein, a novel localized high-concentration electrolyte is developed, comprising ultra-low content (2% by mass) triethylammonium chloride as an electrolyte additive. The stable Lewis acid structure of the triethylammonium chloride molecule allows for the adsorption of numerous solvent molecules and TFSI− anions, intensifying the electrostatic interactions between lithium ions and anions. The chloride ions introduced by TC, along with TFSI− anions, integrate into the solvent sheath, forming a LiCl-rich inorganic SEI and enhancing the electrochemical performance of the lithium metal anode. The improved Li||Li cell shows excellent cycling stability for over 500 h at 1 mA cm2 with a 27 mV overpotential. This work provides insights into the impact of electrolyte additives on the electrode-electrolyte interface and Li-ion solvation, crucial for safer lithium metal battery development.
- Organisationseinheit(en)
-
Fakultät für Mathematik und Physik
- Externe Organisation(en)
-
College of Bioresources Chemical and Materials Engineering
Shaanxi University of Science and Technology
Anhui University
Research Center for Electrochemical Energy Storage Technologies
Chongqing Institute of Green and Intelligent Technology (CIGIT)
Singapore University of Technology and Design
- Typ
- Artikel
- Journal
- Energy and Environmental Materials
- ISSN
- 2575-0348
- Publikationsdatum
- 2025
- Publikationsstatus
- Angenommen/Im Druck
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Erneuerbare Energien, Nachhaltigkeit und Umwelt, Allgemeine Materialwissenschaften, Gewässerkunde und -technologie, Umweltwissenschaften (sonstige), Abfallwirtschaft und -entsorgung, Energie (sonstige)
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.1002/eem2.70029 (Zugang:
Offen)