An Adaptive Clustering Approach for Accident Prediction

verfasst von
Rajjat Dadwal, Thorben Funke, Elena Demidova
Abstract

Traffic accident prediction is a crucial task in the mobility domain. State-of-the-art accident prediction approaches are based on static and uniform grid-based geospatial aggregations, limiting their capability for fine-grained predictions. This property becomes particularly problematic in more complex regions such as city centers. In such regions, a grid cell can contain subregions with different properties; furthermore, an actual accident-prone region can be split across grid cells arbitrarily. This paper proposes Adaptive Clustering Accident Prediction (ACAP) - a novel accident prediction method based on a grid growing algorithm. ACAP applies adaptive clustering to the observed geospatial accident distribution and performs embeddings of temporal, accident-related, and regional features to increase prediction accuracy. We demonstrate the effectiveness of the proposed ACAP method using open real-world accident datasets from three cities in Germany. We demonstrate that ACAP improves the accident prediction performance for complex regions by 2-3 percent points in F1-score by adapting the geospatial aggregation to the distribution of the underlying spatio-temporal events. Our grid growing approach outperforms the clustering-based baselines by four percent points in terms of F1-score on average.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Rheinische Friedrich-Wilhelms-Universität Bonn
Typ
Aufsatz in Konferenzband
Seiten
1405-1411
Anzahl der Seiten
7
Publikationsdatum
19.09.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Fahrzeugbau, Maschinenbau, Angewandte Informatik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2108.12308 (Zugang: Offen)
https://doi.org/10.1109/ITSC48978.2021.9564564 (Zugang: Unbekannt)