The STEM-ECR Dataset
Grounding Scientific Entity References in STEM Scholarly Content to Authoritative Encyclopedic and Lexicographic Sources
- verfasst von
- Jennifer D'Souza, Anett Hoppe, Arthur Brack, Mohamad Yaser Jaradeh, Sören Auer, Ralph Ewerth
- Abstract
We introduce the STEM (Science, Technology, Engineering, and Medicine) Dataset for Scientific Entity Extraction, Classification, and Resolution, version 1.0 (STEM-ECR v1.0). The STEM-ECR v1.0 dataset has been developed to provide a benchmark for the evaluation of scientific entity extraction, classification, and resolution tasks in a domain-independent fashion. It comprises abstracts in 10 STEM disciplines that were found to be the most prolific ones on a major publishing platform. We describe the creation of such a multidisciplinary corpus and highlight the obtained findings in terms of the following features: 1) a generic conceptual formalism for scientific entities in a multidisciplinary scientific context; 2) the feasibility of the domain-independent human annotation of scientific entities under such a generic formalism; 3) a performance benchmark obtainable for automatic extraction of multidisciplinary scientific entities using BERT-based neural models; 4) a delineated 3-step entity resolution procedure for human annotation of the scientific entities via encyclopedic entity linking and lexicographic word sense disambiguation; and 5) human evaluations of Babelfy returned encyclopedic links and lexicographic senses for our entities. Our findings cumulatively indicate that human annotation and automatic learning of multidisciplinary scientific concepts as well as their semantic disambiguation in a wide-ranging setting as STEM is reasonable.
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 2192-2203
- Anzahl der Seiten
- 12
- Publikationsdatum
- 05.2020
- Publikationsstatus
- Veröffentlicht
- ASJC Scopus Sachgebiete
- Ausbildung bzw. Denomination, Bibliotheks- und Informationswissenschaften, Sprache und Linguistik, Linguistik und Sprache
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://arxiv.org/abs/2003.01006 (Zugang:
Offen)
https://www.aclweb.org/anthology/2020.lrec-1.268.pdf (Zugang: Geschlossen)