Fe3O4 loaded biochar to enhance persulfate activation for tetracycline degradation
Performance and mechanism
- verfasst von
- Hong Kang, Haitao Ren, Abdelkader Labidi, Yanqing Liao, Yu Wang, Huiqi Zheng, Detlef Bahnemann, Chuanyi Wang
- Abstract
Waste sodium lignosulfonate (LS) is widely converted into biochar-based catalysts due to its rich functional groups and high carbon content. However, inefficient peroxydisulfate (PDS) activation by original sodium lignosulfonate biochar (LB) limits its ability to remove organic pollutants from water bodies. Here, LS was employed as a precursor to synthesize Fe3O4-loaded biochar (Fe3O4@LB) through a one-step pyrolysis process for activating PDS to remove tetracycline (TC). Compared with the original LB, Fe3O4@LB exhibited a larger specific surface area (459.78 m2/g), which is advantageous in providing more adsorption and reaction active sites. Quenching experiment and electron paramagnetic resonance (EPR) analysis revealed that 1O2 and O2•− are the primary active species involved in TC degradation. Characterization results showed that Fe3O4 is uniformly distributed on the biochar, providing abundant Fe(II) to activate the PDS to generate reactive species (ROS). The Fe(III) generated after the reaction was reduced by electron-rich biochar to promote Fe(III)/Fe(II) cycling. The Fe3O4@LB-3/PDS system displayed excellent performance, degrading 90% of TC within 20 min, with a rate constant k of 0.092 min−1, which is about three times that of the LB (0.036 min−1). Based on the liquid chromatography-mass spectrometry (LC-MS) analysis, three possible degradation pathways were proposed. Besides, mung bean growth experiments confirmed the detoxification of TC by the Fe3O4@LB-3/PDS system. This work highlights the feasibility of waste LS usage to produce highly efficient biochar catalysts, providing a sustainable and green alternative to address water contamination by antibiotics.
- Organisationseinheit(en)
-
Institut für Technische Chemie
- Externe Organisation(en)
-
Shaanxi University of Science and Technology
Xijing University
Staatliche Universität Sankt Petersburg
- Typ
- Artikel
- Journal
- CHEMOSPHERE
- Band
- 376
- ISSN
- 0045-6535
- Publikationsdatum
- 05.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Environmental engineering, Umweltchemie, Allgemeine Chemie, Umweltverschmutzung, Öffentliche Gesundheit, Umwelt- und Arbeitsmedizin, Gesundheit, Toxikologie und Mutagenese
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://doi.org/10.1016/j.chemosphere.2025.144267 (Zugang:
Geschlossen)