TiO2/Fe3O4/Ag nanophotocatalysts in solar fuel production

New approach to using a flexible lightweight sustainable textile fabric

verfasst von
T. Harifi, M. Montazer, R. Dillert, D.W. Bahnemann
Abstract

There has been always a desire for simultaneous pollutants degradation and fuel gas formation to solve the energy and environmental challenges of today's world. In this regard, photocatalytic decomposition of organic compounds along with solar fuel production has been highly concerned. In this approach, magnetic titania nanophotocatalysts have been used for the photocatalytic generation of fuel gases using acetic acid decomposition. TiO

2/Fe

3O

4/Ag nanocomposites were found to be effective in the photocatalytic transformation of acetic acid to produce CO

2 and CH

4 as the main gaseous products along with very small quantities of H

2. The effect of low and heavy loading of magnetite and silver on photocatalytic gas formation at the nanocomposite surface has been also addressed. The amount of CO

2 and CH

4 gases evolved after 17 h irradiation was increased from 32 and 13 μmolh

−1g

−1 for bare TiO

2 P25 to 1169 and 992 μmolh

−1g

−1 for TiO

2/Fe

3O

4/Ag nanocomposite. Moreover, the ratio of the formation rates of methane to carbon dioxide evolution was increased from 0.38 for bare TiO

2 P25 to 0.85 for TiO

2/Fe

3O

4/Ag nanocomposite indicating the transition to photo-Kolbe reaction along with some alcohol formation as the main possible reaction pathways. In addition, this study designed a new approach to develop durable flexible lightweight polyester textile fabric as an innovative sustainable immobilized substrate for photo transformation of acetic acid to produce fuel gaseous products. The results indicated that more than the successful cooperation of magnetite and silver in enhanced separation of electron-hole pairs, surface phenomena such as surface wettability as proved by contact angle test are responsible for the photocatalytic activities of a fibrous substrate in aqueous systems.

Organisationseinheit(en)
Institut für Technische Chemie
Externe Organisation(en)
Amirkabir University of Technology
Staatliche Universität Sankt Petersburg
Typ
Artikel
Journal
Journal of Cleaner Production
Band
196
Seiten
688-697
Anzahl der Seiten
10
ISSN
0959-6526
Publikationsdatum
20.09.2018
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Erneuerbare Energien, Nachhaltigkeit und Umwelt, Allgemeine Umweltwissenschaft, Strategie und Management, Wirtschaftsingenieurwesen und Fertigungstechnik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.jclepro.2018.06.031 (Zugang: Geschlossen)