PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries
- verfasst von
- Zhouhao Wang, Yan Li, Shaozhuan Huang, Lixiang Liu, Ye Wang, Jun Jin, Dezhi Kong, Lin Zhang, Oliver G. Schmidt
- Abstract
Integrating nanostructured Si materials into a freestanding membrane with high mechanical strength and a continuous conductive network is a promising but challenging route to achieve high energy density lithium ion batteries (LIBs). Herein, we demonstrate that physical vapor deposition (PVD) customized two-dimensional (2D) porous amorphous Si nanoflakes, reinforced with ultralong multiwalled carbon nanotubes (MWCNTs), can be integrated into a freestanding film electrode with high volumetric/areal capacity and energy density. Owing to the special 1D/2D nanotube/nanoflake entangled architecture, the freestanding Si-MWCNT film is highly porous, electrically conductive, and mechanically robust. Moreover, the interconnected MWCNT network functions as a spacer to prevent adjacent Si nanoflakes from restacking, and the 2D porous Si nanoflakes provide a large electrode/electrolyte contact area, both of which enable fast Li
+ transportation. Due to the existence of abundant pores in both amorphous Si nanoflakes (mesopores) and Si-MWCNT electrodes (macropores), the volume change is significantly suppressed, resulting in stable electrodes with tunable mass loadings from 1.7 to 5.4 mg cm
-2. When directly used as an anode, the Si-MWCNT film with a mass loading of 2.9 mg cm
-2 exhibits a high specific capacity of 1556 mA h g
-1 and an areal capacity of 4.5 mA h cm
-2. Remarkably, when this freestanding anode is coupled with a commercial LiNi
1/3Co
1/3Mn
1/3O
2 (NCM) cathode, the full battery delivers a high gravimetric energy density of ∼484.7 W h kg
-1. This study offers a promising and general route to design freestanding electrodes by percolating CNTs with PVD generated 2D porous nanoflakes and provides significant insights for developing high energy battery systems.
- Organisationseinheit(en)
-
Institut für Festkörperphysik
- Externe Organisation(en)
-
South-Central University for Nationalities
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V.
Zhengzhou University
China University of Geosciences (CUG)
Technische Universität Chemnitz
- Typ
- Artikel
- Journal
- Journal of Materials Chemistry A
- Band
- 8
- Seiten
- 4836-4843
- Anzahl der Seiten
- 8
- ISSN
- 2050-7488
- Publikationsdatum
- 07.03.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Chemie, Erneuerbare Energien, Nachhaltigkeit und Umwelt, Allgemeine Materialwissenschaften
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.1039/c9ta12923e (Zugang:
Geschlossen)