Microbial response on changing C:P stoichiometry in steppe soils of Northern Kazakhstan

verfasst von
Yuhuai Liu, Olga Shibistova, Guan Cai, Leopold Sauheitl, Mouliang Xiao, Tida Ge, Georg Guggenberger
Abstract

Background and aims: The stoichiometric ratio of carbon (C): phosphorus (P) acquisition is strongly correlated with soil available C:P ratio. However how the stoichiometric relationship between acquiring C and P through microbial metabolism affects bioavailable P is poorly understood in semi-arid agricultural ecosystems. Methods: Our objective was to investigate the underlying mechanisms of the P availability in typical P-limited steppe soil from Kazakhstan in response to mineral nutrient (Na2HPO4) with and without Dactylis glomerata L. leaves addition in a 38-day incubation experiment. Results: Four bioavailable P fractions content (CaCl2-P, Citrate-P, Enzyme-P, and HCl-P) were improved. Sole application of P fertilizer decreased the maximal velocity (Vmax) of P acquisition enzyme (phosphomonoesterase) but increased microbial C limitation, resulting in increasing the ratio of C to P acquisition but decreasing the ratio of available dissolved organic C: Olsen-P. In contrast, plant residues returning (the application of sole D. glomerata leaves and the combined application of D.glomerata and mineral P) increased Vmax of C (β-1, 4-glucosidase, β-D-cellobiosidase, β-1, 4-xylosidase) and P acquisition enzymes, however decreasing microbial C and P limitation through improving microbial metabolism. Furthermore, the spearman correlation and piecewiseSEM analysis suggested that microbial C limitation and EEAC:P had a negative effect on P availability, illustrating that the decreasing of microbial C limitation can improve soil bioavailable P. Conclusion: The decomposition of organic residues eliminated microbial P limitation and increased P availability by allocating C and P acquisition enzymes to balance the stoichiometric ratio of microbial C and P demand. Graphical Abstract: [Figure not available: see fulltext.].

Organisationseinheit(en)
Institut für Bodenkunde
Externe Organisation(en)
Ningbo University
The Second Surveying and Mapping Institute of Hunan Province
Zhejiang Agriculture and Forestry University
Typ
Artikel
Journal
Plant and soil
Band
493
Seiten
375-389
Anzahl der Seiten
15
ISSN
0032-079X
Publikationsdatum
12.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Bodenkunde, Pflanzenkunde
Ziele für nachhaltige Entwicklung
SDG 2 – Kein Hunger
Elektronische Version(en)
https://doi.org/10.1007/s11104-023-06235-9 (Zugang: Geschlossen)