The human liver matrisome

Proteomic analysis of native and fibrotic human liver extracellular matrices for organ engineering approaches

verfasst von
Assal Daneshgar, Oliver Klein, Grit Nebrich, Marie Weinhart, Peter Tang, Alexander Arnold, Imran Ullah, Julian Pohl, Simon Moosburner, Nathanael Raschzok, Benjamin Strücker, Marcus Bahra, Johann Pratschke, Igor M. Sauer, Karl H. Hillebrandt
Abstract

The production of biomaterials that endow significant morphogenic and microenvironmental cues for the constitution of cell integration and regeneration remains a key challenge in the successful implementation of functional organ replacements. Despite the vast development in the production of biological and architecturally native matrices, the complex compositions and pivotal figures by which the human matrisome mediates many of its essential functions are yet to be defined. Here we present a thorough analysis of the native human liver proteomic landscape using decellularization and defatting protocols to create extracellular matrix scaffolds of natural origin that can further be used in both bottom-up and top-down approaches in tissue engineering based organ replacements. Furthermore, by analyzing human liver extracellular matrices in different stages of fibrosis and cirrhosis, we have identified distinct attributes of these tissues that could potentially be exploited therapeutically and thus require further investigation. The general experimental pipeline presented in this study is applicable to any type of tissue and can be widely used for different approaches in regenerative medicine and in the construction of novel biomaterials for organ engineering approaches.

Organisationseinheit(en)
AG Polymere und Biomaterialien
Externe Organisation(en)
Freie Universität Berlin (FU Berlin)
Westfälische Wilhelms-Universität Münster (WWU)
Berliner Institut für Gesundheitsforschung
Charité - Universitätsmedizin Berlin
Typ
Artikel
Journal
Biomaterials
Band
257
ISSN
0142-9612
Publikationsdatum
10.2020
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Biophysik, Bioengineering, Keramische und Verbundwerkstoffe, Biomaterialien, Werkstoffmechanik
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1016/j.biomaterials.2020.120247 (Zugang: Geschlossen)