The human liver matrisome
Proteomic analysis of native and fibrotic human liver extracellular matrices for organ engineering approaches
- verfasst von
- Assal Daneshgar, Oliver Klein, Grit Nebrich, Marie Weinhart, Peter Tang, Alexander Arnold, Imran Ullah, Julian Pohl, Simon Moosburner, Nathanael Raschzok, Benjamin Strücker, Marcus Bahra, Johann Pratschke, Igor M. Sauer, Karl H. Hillebrandt
- Abstract
The production of biomaterials that endow significant morphogenic and microenvironmental cues for the constitution of cell integration and regeneration remains a key challenge in the successful implementation of functional organ replacements. Despite the vast development in the production of biological and architecturally native matrices, the complex compositions and pivotal figures by which the human matrisome mediates many of its essential functions are yet to be defined. Here we present a thorough analysis of the native human liver proteomic landscape using decellularization and defatting protocols to create extracellular matrix scaffolds of natural origin that can further be used in both bottom-up and top-down approaches in tissue engineering based organ replacements. Furthermore, by analyzing human liver extracellular matrices in different stages of fibrosis and cirrhosis, we have identified distinct attributes of these tissues that could potentially be exploited therapeutically and thus require further investigation. The general experimental pipeline presented in this study is applicable to any type of tissue and can be widely used for different approaches in regenerative medicine and in the construction of novel biomaterials for organ engineering approaches.
- Organisationseinheit(en)
-
AG Polymere und Biomaterialien
- Externe Organisation(en)
-
Freie Universität Berlin (FU Berlin)
Westfälische Wilhelms-Universität Münster (WWU)
Berliner Institut für Gesundheitsforschung
Charité - Universitätsmedizin Berlin
- Typ
- Artikel
- Journal
- Biomaterials
- Band
- 257
- ISSN
- 0142-9612
- Publikationsdatum
- 10.2020
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Biophysik, Bioengineering, Keramische und Verbundwerkstoffe, Biomaterialien, Werkstoffmechanik
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://doi.org/10.1016/j.biomaterials.2020.120247 (Zugang:
Geschlossen)