Contrasting pathways of carbon sequestration in paddy and upland soils

verfasst von
Xiangbi Chen, Yajun Hu, Yinhang Xia, Shengmeng Zheng, Chong Ma, Yichao Rui, Hongbo He, Daoyou Huang, Zhenhua Zhang, Tida Ge, Jinshui Wu, Georg Guggenberger, Yakov Kuzyakov, Yirong Su
Abstract

Paddy soils make up the largest anthropogenic wetlands on earth, and are characterized by a prominent potential for organic carbon (C) sequestration. By quantifying the plant- and microbial-derived C in soils across four climate zones, we identified that organic C accrual is achieved via contrasting pathways in paddy and upland soils. Paddies are 39%–127% more efficient in soil organic C (SOC) sequestration than their adjacent upland counterparts, with greater differences in warmer than cooler climates. Upland soils are more replenished by microbial-derived C, whereas paddy soils are enriched with a greater proportion of plant-derived C, because of the retarded microbial decomposition under anaerobic conditions induced by the flooding of paddies. Under both land-use types, the maximal contribution of plant residues to SOC is at intermediate mean annual temperature (15–20°C), neutral soil (pH~7.3), and low clay/sand ratio. By contrast, high temperature (~24°C), low soil pH (~5), and large clay/sand ratio are favorable for strengthening the contribution of microbial necromass. The greater contribution of microbial necromass to SOC in waterlogged paddies in warmer climates is likely due to the fast anabolism from bacteria, whereas fungi are unlikely to be involved as they are aerobic. In the scenario of land-use conversion from paddy to upland, a total of 504 Tg C may be lost as CO2 from paddy soils (0–15 cm) solely in eastern China, with 90% released from the less protected plant-derived C. Hence, preserving paddy systems and other anthropogenic wetlands and increasing their C storage through sustainable management are critical for maintaining global soil C stock and mitigating climate change.

Organisationseinheit(en)
Institut für Bodenkunde
AG Bodenchemie
Externe Organisation(en)
Institute of Subtropical Agriculture, Chinese Academy of Sciences
Hunan Agricultural University
Rodale Institute
CAS - Shenyang Institute of Applied Ecology
Georg-August-Universität Göttingen
Peoples' Friendship University of Russia (RUDN)
Typ
Artikel
Journal
Global change biology
Band
27
Seiten
2478-2490
Anzahl der Seiten
13
ISSN
1354-1013
Publikationsdatum
07.05.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Globaler Wandel, Umweltchemie, Ökologie, Umweltwissenschaften (insg.)
Ziele für nachhaltige Entwicklung
SDG 13 – Klimaschutzmaßnahmen, SDG 15 – Lebensraum Land
Elektronische Version(en)
https://doi.org/10.1111/gcb.15595 (Zugang: Offen)