HyKG-CF

A Hybrid Approach for Counterfactual Prediction using Domain Knowledge

verfasst von
Hao Huang, Maria Esther Vidal
Abstract

Predictive models are gaining attention as powerful tools for aiding clinicians in diagnosis, prognosis, and treatment recommendations. However, their reliance on associative patterns may raise concerns about reliability of decision support, as association does not necessarily imply causation. To address this limit, we propose HyKG-CF, a hybrid approach to counterfactual prediction that leverages data and domain knowledge encoded in knowledge graph (KG). HyKG-CF integrates symbolic reasoning (on knowledge) with numerical learning (on data) using large language models (LLMs) and statistical models to learn causal Bayesian networks (CBNs) for accurate counterfactual prediction. Using data and knowledge, HyKG-CF improves the accuracy of causal discovery and counterfactual prediction. We evaluate HyKG-CF on a non-small cell lung cancer (NSCLC) KG, demonstrating that it outperforms other baselines. The results highlight the promise of combining domain knowledge with causal models to improve counterfactual prediction.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Aufsatz in Konferenzband
Seiten
1104-1105
Anzahl der Seiten
2
Publikationsdatum
10.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computernetzwerke und -kommunikation, Angewandte Informatik, Software
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1145/3701551.3708813 (Zugang: Geschlossen)