HyKG-CF
A Hybrid Approach for Counterfactual Prediction using Domain Knowledge
- verfasst von
- Hao Huang, Maria Esther Vidal
- Abstract
Predictive models are gaining attention as powerful tools for aiding clinicians in diagnosis, prognosis, and treatment recommendations. However, their reliance on associative patterns may raise concerns about reliability of decision support, as association does not necessarily imply causation. To address this limit, we propose HyKG-CF, a hybrid approach to counterfactual prediction that leverages data and domain knowledge encoded in knowledge graph (KG). HyKG-CF integrates symbolic reasoning (on knowledge) with numerical learning (on data) using large language models (LLMs) and statistical models to learn causal Bayesian networks (CBNs) for accurate counterfactual prediction. Using data and knowledge, HyKG-CF improves the accuracy of causal discovery and counterfactual prediction. We evaluate HyKG-CF on a non-small cell lung cancer (NSCLC) KG, demonstrating that it outperforms other baselines. The results highlight the promise of combining domain knowledge with causal models to improve counterfactual prediction.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 1104-1105
- Anzahl der Seiten
- 2
- Publikationsdatum
- 10.03.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Computernetzwerke und -kommunikation, Angewandte Informatik, Software
- Ziele für nachhaltige Entwicklung
- SDG 3 – Gute Gesundheit und Wohlergehen
- Elektronische Version(en)
-
https://doi.org/10.1145/3701551.3708813 (Zugang:
Geschlossen)