Enhancing Medical Knowledge Discovery

A Neuro-symbolic System for Inductive Learning over Medical KGs

verfasst von
Disha Purohit, Yashrajsinh Chudasama, Maria Esther Vidal
Abstract

Medical knowledge graphs (KGs) excel at integrating heterogeneous healthcare data with domain knowledge, but face challenges due to incompleteness. While Knowledge Graph Embedding (KGE) models show promise in link prediction, they often fail to incorporate crucial semantic constraints from medical ontologies and clinical guidelines. We propose a neuro-symbolic system that enhances medical knowledge discovery by combining symbolic learning from medical ontologies, inductive learning through KGE, and semantic constraint validation. Applied to lung cancer care, our system demonstrates enhanced performance in predicting novel medical relationships while maintaining semantic consistency with medical knowledge. Experimental results show our approach enhances the KGE model's performance while ensuring clinical validity and the implementation is publicly accessible on GitHub.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Aufsatz in Konferenzband
Seiten
1108-1109
Anzahl der Seiten
2
Publikationsdatum
10.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Computernetzwerke und -kommunikation, Angewandte Informatik, Software
Ziele für nachhaltige Entwicklung
SDG 3 – Gute Gesundheit und Wohlergehen
Elektronische Version(en)
https://doi.org/10.1145/3701551.3708814 (Zugang: Geschlossen)