Processing Multimodal Information

Challenges and Solutions for Multimodal Sentiment Analysis and Hate Speech Detection

verfasst von
Sherzod Hakimov, Gullal S. Cheema, Ralph Ewerth
Abstract

This chapter explores the challenges and solutions for processing multimodal information, specifically in the context of multimodal sentiment analysis and hate speech detection. The increasing amount of multimodal data, such as text, images and videos, presents unique challenges for machine learning algorithms. These challenges include the integration and fusion of information from multiple modalities to acquire the overall context. In this chapter, first, we present an overview of recent developments on multimodal learning techniques in the context of sentiment and hate speech detection; second, we present a multimodal model that combines different visual aspects and features for multimodal sentiment detection; and third, we present a multi-task multimodal model for misogyny detection in multimodal memes.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Universität Potsdam
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Beitrag in Buch/Sammelwerk
Seiten
71-94
Anzahl der Seiten
24
Publikationsdatum
2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Computerwissenschaft, Allgemeine Sozialwissenschaften
Ziele für nachhaltige Entwicklung
SDG 5 – Gleichberechtigung der Geschlechter
Elektronische Version(en)
https://doi.org/10.1007/978-3-031-64451-1_4 (Zugang: Offen)