Enhancing virtual machine placement efficiency in cloud data centers

a hybrid approach using multi-objective reinforcement learning and clustering strategies

verfasst von
Arezoo Ghasemi, Abolfazl Toroghi Haghighat, Amin Keshavarzi
Abstract

Deploying virtual machines poses a significant challenge for cloud data centers, requiring careful consideration of various objectives such as minimizing energy consumption, resource wastage, ensuring load balancing, and meeting service level agreements. While researchers have explored multi-objective methods to tackle virtual machine placement, evaluating potential solutions remains complex in such scenarios. In this paper, we introduce two novel multi-objective algorithms tailored to address this challenge. The VMPMFuzzyORL method employs reinforcement learning for virtual machine placement, with candidate solutions assessed using a fuzzy system. While practical, incorporating fuzzy systems introduces notable runtime overhead. To mitigate this, we propose MRRL, an alternative approach involving initial virtual machine clustering using the k-means algorithm, followed by optimized placement utilizing a customized reinforcement learning strategy with multiple reward signals. Extensive simulations highlight the significant advantages of these approaches over existing techniques, particularly energy efficiency, resource utilization, load balancing, and overall execution time.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Islamic Azad University
Typ
Artikel
Journal
Computing
Band
106
Seiten
2897-2922
Anzahl der Seiten
26
ISSN
0010-485X
Publikationsdatum
09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Theoretische Informatik, Numerische Mathematik, Angewandte Informatik, Theoretische Informatik und Mathematik, Computational Mathematics
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1007/s00607-024-01311-z (Zugang: Geschlossen)