A non-iterative partitioned computational method with the energy conservation property for time-variant dynamic systems

verfasst von
Peng Yuan, Ka Veng Yuen, Michael Beer, C. S. Cai, Wangji Yan
Abstract

A non-iterative partitioned computational method with the energy conservation property is proposed in this study for calculating a large class of time-variant dynamic systems comprising multiple subsystems. The velocity continuity conditions are first assumed in all interfaces of the partitioned subsystems to resolve the interface link forces. The Newmark integration scheme is subsequently employed to independently calculate the responses of each system based on the obtained link forces. The proposed method is thus divided into two computational modules: multi-partitioned structural analyzers and an interface solver, providing a modular solution for time-variant systems. The proposed method resolves the long-standing problem of iterative computation required in partitioned time-variant systems. More specifically, the proposed method eliminates the need for time-variant matrix formation and the utilization of complex iterative procedures in partitioned computations, which significantly improves computational efficiency. The derivation process and theoretical demonstration of the proposed method are thoroughly presented through a representative example, i.e., a vehicle-rail-sleeper-ballast time-variant system. The proposed method's accuracy, energy conservation property, and efficiency are systematically demonstrated in comparison with the results of the global model, highlighting its superior performance. A more general example provided in Appendix C demonstrates that the proposed method is not confined to the analysis of vehicle-rail-sleeper-ballast systems but applies to other structural dynamic systems.

Organisationseinheit(en)
Institut für Risiko und Zuverlässigkeit
Externe Organisation(en)
The University of Liverpool
Tongji University
Southeast University (SEU)
University of Macau
Typ
Artikel
Journal
Mechanical Systems and Signal Processing
Band
209
Anzahl der Seiten
26
ISSN
0888-3270
Publikationsdatum
01.03.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Signalverarbeitung, Tief- und Ingenieurbau, Luft- und Raumfahrttechnik, Maschinenbau, Angewandte Informatik
Ziele für nachhaltige Entwicklung
SDG 7 – Erschwingliche und saubere Energie
Elektronische Version(en)
https://doi.org/10.1016/j.ymssp.2024.111105 (Zugang: Geschlossen)