Interfacial triazine chemistry modulates zn deposition and suppresses shuttle effect for durable aqueous zinc bromine/iodine batteries over a wide-temperature-range
- verfasst von
- Peng Xiong, Quanwei Ma, Shilin Zhang, Lifang Jiao, Guanjie Li, Xindan Zhang, Rui Wang, Hongbao Li, Lin Zhang, Chaofeng Zhang
- Abstract
Aqueous zinc-bromine/iodine batteries are promising candidates for grid-scale energy storage due to their high energy density, inherent safety advantages, and potential cost-effectiveness. However, their practical deployment is hindered by Zn anode issues such as dendrite formation and parasitic hydrogen evolution reactions (HER), as well as polyhalides shuttling and sluggish redox kinetics at the cathode. Here, we report an in situ electropolymerized covalent triazine framework (EP-CTF) that simultaneously stabilizes the Zn anodes and suppresses polyhalides migration. The EP-CTF layer, rich in electronegative triazine (‒C = N‒) groups, exhibits strong Zn2+ affinity and offers abundant nucleation sites, guiding Zn2+ deposition preferentially along the Zn (002) plane. Additionally, the EP-CTF layer serves as a proton-blocking barrier to inhibit side reactions such as the HER and chemical corrosion, as validated by operando synchrotron spectroscopy analysis. On the cathode side, both theoretical calculations and experimental results confirm that the EP-CTF framework electrostatically repels polyhalides, thereby suppressing the shuttle effect. Consequently, EP-CTF@Zn||I2 exhibits remarkable cycling stability over 30,000 cycles at 1 A g−1, and EP-CTF@Zn||Br maintains 5000 cycles at 4 A g−1. Both systems demonstrate excellent performance across a wide temperature range (−50 to 50 oC). This multifunctional interface enables simultaneous optimization of both electrodes in advanced Zn-bromine/iodine batteries.
- Organisationseinheit(en)
-
Institut für Festkörperphysik
Fakultät für Mathematik und Physik
- Externe Organisation(en)
-
Anhui University
University of Adelaide
Nankai University
- Typ
- Artikel
- Journal
- Energy Storage Materials
- Band
- 81
- ISSN
- 2405-8297
- Publikationsdatum
- 09.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Erneuerbare Energien, Nachhaltigkeit und Umwelt, Allgemeine Materialwissenschaften, Energieanlagenbau und Kraftwerkstechnik
- Ziele für nachhaltige Entwicklung
- SDG 7 – Erschwingliche und saubere Energie
- Elektronische Version(en)
-
https://doi.org/10.1016/j.ensm.2025.104549 (Zugang:
Geschlossen)